Atmospheric Vapor Extraction Device

Final Presentation

Adnan Alhashim, Nathan Allred, Essa Alowis Travis Butterly, Andy McPhail, Nate Ogbasellasie

December 8, 2015

Overview

- Introduction
- Problem Statement
- Course of Action
- Sensors
- Design
- Bill of Materials
- Conclusion

Introduction

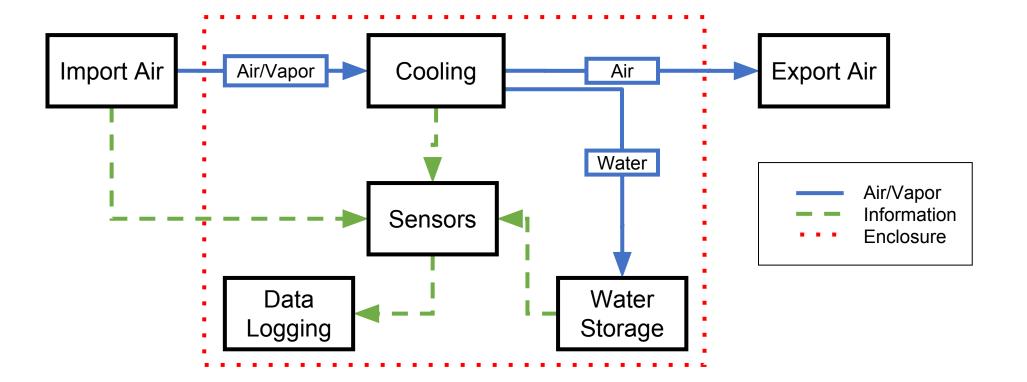
- Mr. Chris Allender wants a device that measures the effectiveness of extracting water from air
- This device should have a maximum cost of \$1,000 and also be portable enough for one person to transport
- The device must measure the atmospheric conditions and water produced

Need Statement

There is not enough research to determine if extracting water from air is a viable option in arid environments.

Project Goal

Create an atmospheric vapor extraction device for researching optimal operating conditions.


Objectives

rqmt. #	Function	Engineering Requirement	Unit of Measure
1	Collection	collect water	kg
2	Portable	small enough to move	m^3
3	Low Cost	low cost to build	\$

Constraints

rqmt. #	Function	Engineering Requirement	Unit of Measure	Value
1	Sensing	equip enough sensors	#	
2	Data Logging	enough data storage	MB	
3	Production	cost of production	\$	<1,000
4	Power Usage	limit power to avg home	W	
5	Power Source	must not use 220v power source	Y/N	

Functional Diagram

Analytical Hierarchy Process

Judgement Numerical						Power Source	•		
of Preference				Size	Weight	Initial Cost	Running	Reliability	Ease of Use
Extremely	9						Cost		
preferred Very strongly			Size	1	1/3	1/5	1/5	1/7	5
preferred	7		Weight	3	1	1/5	1/5	1/7	3
Strongly preferred	5		Initial Cost	5	5	1	3	3	5
Moderately preferred	3		Running Cost	5	5	1/3	1	1/3	3
Equally preferred	1		Reliability	7	7	1/3	3	1	3
			Ease of Use	1/5	1/3	1/5	1/3	1/3	1

Normalized Criteria

Power Source							
	Size	Weight	Initial Cost	Running Cost	Reliability	Ease of Use	Rel. Weight
Size	0.047	0.018	0.088	0.026	0.029	0.250	8
Weight	0.142	0.054	0.088	0.026	0.029	0.150	8
Initial Cost	0.236	0.268	0.441	0.388	0.606	0.250	35
Running Cost	0.236	0.268	0.147	0.129	0.067	0.150	17
Reliability	0.330	0.375	0.147	0.388	0.202	0.150	27
Ease of Use	0.009	0.018	0.088	0.043	0.067	0.050	5

Relative Weights

Power Source				
size 8				
weight	8			
initial cost 35				
running cost	17			
reliability	27			
ease of use 5				
	100			

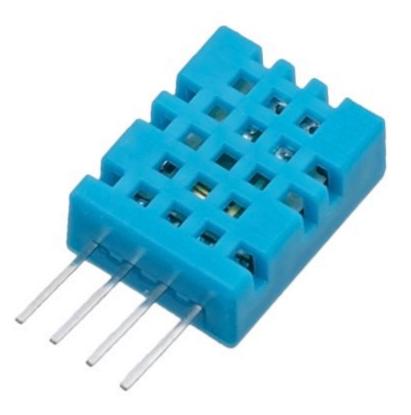
Sensors/Data Logger				
cost	13			
reliability	29			
accuracy	52			
ease of use	6			
	100			

Refrigerator				
size 13				
weight	20			
initial cost	27			
running cost	15			
reliability	25			
	100			

Decision Matrix - Power Source

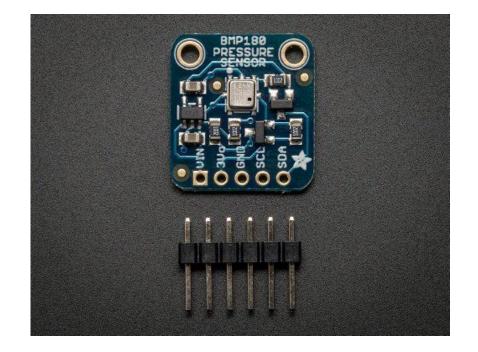
	Wind	Solar Panels	Generator	Outlet	Battery
Size	0.33	0.57	0.51	1.02	0.87
Weight	0.48	0.68	0.40	1.28	0.92
Initial cost	1.15	1.15	1.15	2.16	1.49
Running cost	0.78	0.90	0.39	0.69	0.72
Reliability	0.84	1.16	1.26	1.42	1.05
Ease of use	0.39	0.57	0.63	0.96	0.90
Total	3.97	5.02	4.34	7.53	5.95

Decision Matrix Results


Components	Winning Model
Power Source	Outlet
Refrigerator	Koolatron P-85 Cooler 52-Quart
Sensors/Data Logger	Arduino based, DHT11, BMP180

Sensors

• DHT11 Sensors for detecting


humidity and temperature.

- Can calculate dew point
- Calculations are a few seconds slow

Sensors

- Adafruit BMP180
- Senses temperature, pressure and altitude
- Does not sense humidity

Sensors

- Sensors at input and output
- Sensors will trigger fans
- Dew point will determine fan settings
- Sensors will auto log data to spreadsheets

Arduino Uno

- Simple programming language with lots of support
- Allows for easy use of different types of sensors
- Also, many members of the team are familiar with the board

Power

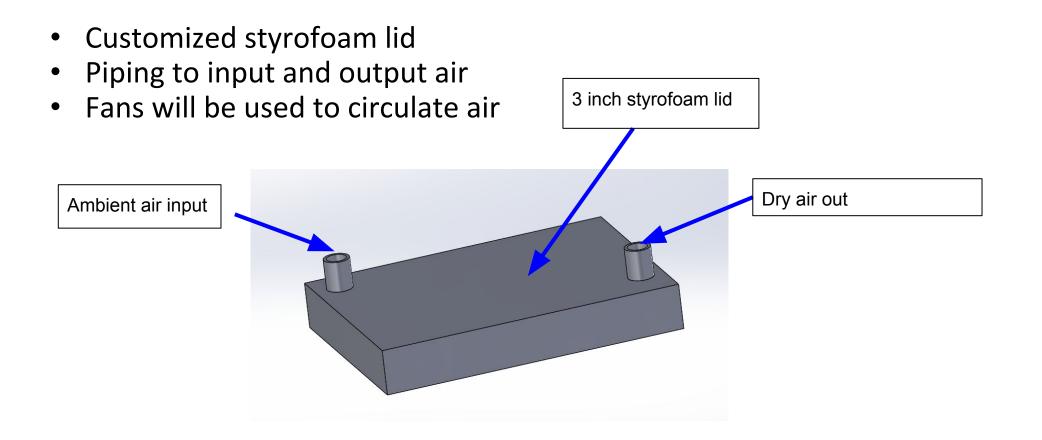
- Arduino can put out 3.3V and 5V
- Arduino can power fans
- Fridge will run off of outlet power
- Can turn on one, two or three fans depending on conditions

Cooling system

Igloo 40-Quart

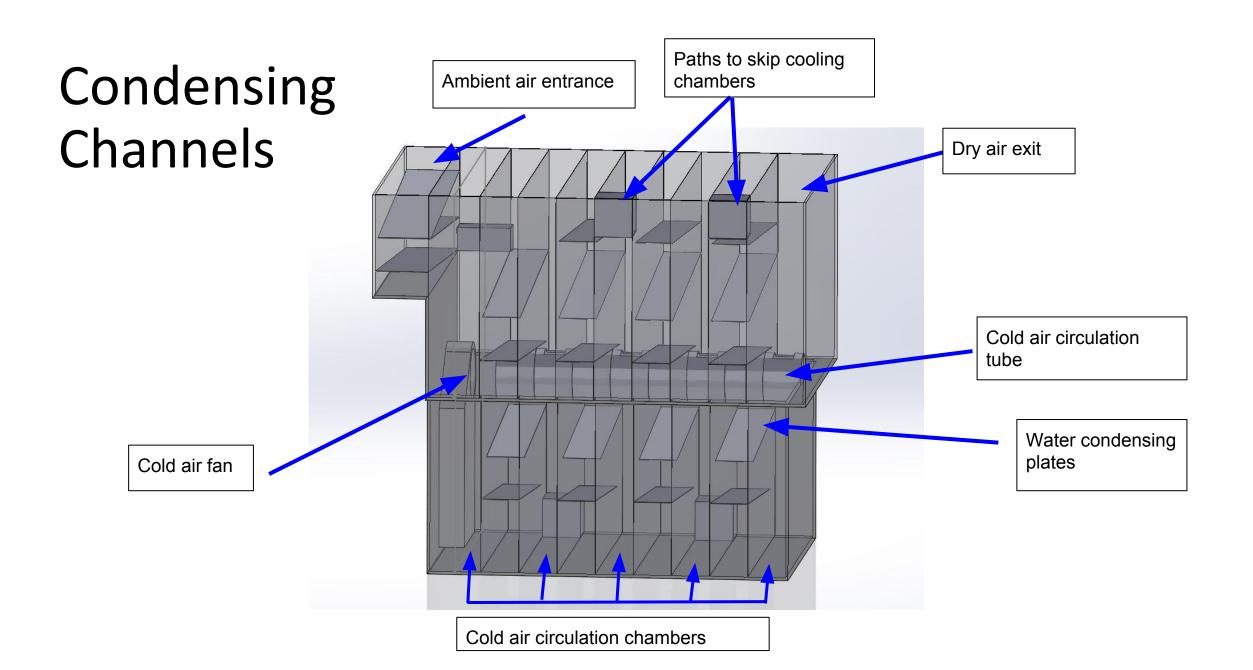
Koolatron 52-Quart

Dometic 15 Quart


Cooling System

Koolatron 52-Quart Krusader Cooler

- Cools 40°F below outside temperature
- 17.4 pounds
- 20 x 15.5 x 20 inches
- 12V outlet with 120V AC adapter


Ambient air cycle

Fans

- Will use a combination of fans depending on atmospheric conditions
- Fan speed will be controlled by arduino
- Air Flow: 57.67 CFM. Fan Speed 1500 ± 10% RPM
- Fan to funnel to tube assembly

Manufacturing of Channels

- Aluminum sheet metal can be spot welded
- Specs for spot welding aluminum:
- Use sheet metal inserts

Electrode force:	3 to 5 kN
Weld time:	2 to 5 cycles (40-100ms)
Welding current:	22 to 28kA

Removing the Water

Options:

- Create a handle for the channels
- Use a pump
- Drill a drain into the cooler

www.richelieu.com

Bill of Materials

Part #	Part Name	Qty.	Price
1	Portable Refrigerator	1	\$169
2	Aluminum Sheets (3ft x 3ft)	2	\$42
3	Arduino	1	\$70
4	Fan (3 pack)	1	\$11
5 Styrofoam Insulating Lid		1	\$25
6	6 Pipe (PVC 1.5in diameter)		\$7
7	Aluminum Pipe (2in diameter)	1	\$16
			Total: \$324

Conclusion

- The goal is to create an atmospheric water extraction device
- Used decision matrices and ranking of criteria to make choices
- Our design meets all of the constraints:
 - Sensing
 - Data logging
 - Cost
 - Power source
- The 3D representation of our drawing shows the air flow cycle
- Use sheet metal and spot welding to manufacture our design
- So far our customer is happy with our progress

References

[1] Lee, Kang, and Ronald Wysk. "Miniature BLDC Refrigeration Compressor." (2011): 7. Web. 27 Oct. 2011. http://www.appliancedesign.com/ext/resources/AM/Home/Files/PDFs/aspen_9-28-2011.pdf.

[2] Glover, William. "Selecting Evaporators for Process Applications." 8 (2004). Web. 9 Dec. 2004. <<u>http:</u> //www.lcicorp.com/assets/documents/CE_Evap_Selection.pdf>.

[3]F. Incropera, "Introduction to Heat Transfer, 6th Edition," Wiley: (2011)

[4] "FAQ: How Do I Resistance Spot Weld Aluminium Alloys?" FAQ: How Do I Resistance Spot Weld Aluminium Alloys? Web. 7 Dec. 2015. <<u>http://www.twi-global.com/technical-knowledge/faqs/process-faqs/faq-how-do-i-resistance-spot-weld-aluminium-alloys/</u>>.